Nanofiber Concrete: Multi-Level Reinforcement

Author:

Leonovich S. N.1,Sadovskaya E. A.1

Affiliation:

1. Belarusian National Technical University

Abstract

Concrete is the most commonly used building material worldwide. One of its main disadvantages is the fragility of fracture and low crack resistance. The use of dispersed reinforcement of concrete composites is a promising direction in solving this type of problem. Dispersed fibers, evenly distributed over the entire volume of the material, create a spatial frame and contribute to the inhibition of developing cracks under the action of destructive forces. In order to increase the fracture toughness of concrete, dispersed fiber reinforcement is increasingly used in practice. The beginning of crack nucleation occurs at the nanoscale in the cement matrix. Thus, the use of nano-reinforcement with dispersed nanofibers can have a positive effect on the crack resistance of the cement composite. It is proposed to consider carbon nanotubes as such nanofibers. The presence of carbon nanofibers changes the microstructure and nanostructure of cement modified with carbon nanotubes. The result of the processes occurring in capillaries and cracks are deformations in the intergranular matrix, the free flow of which is prevented by rigid clinker grains and nanocarbon tubes, which creates a certain stress intensity at the tips of the separation cracks. The working hypothesis is confirmed that the required fracture toughness of structural concrete is provided by multi-level reinforcement: at the level of the crystalline aggregate of cement stone – carbon nanotubes, and at the level of fine-grained concrete – various macro-sized fibers (steel, polymer). Reinforcement of a crystalline joint with carbon nanotubes leads to an increase in the fracture toughness of the matrix (cement stone) by 20 %, compressive strength by 12 %, and tensile strength in bending by 20 %. When reinforcing at the level of fine-grained concrete, we obtain a composite – nanofibre-reinforced concrete with fracture toughness.

Publisher

Belarusian National Technical University

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3