Multi-Parameter Methodology for Assessing Quality Indicators of Nanomodified Fiber-Reinforced Concrete for Construction Site

Author:

Leonovich S. N.1,Sadovskaya E. A.1,Koleda A. A.1

Affiliation:

1. Belarusian National Technical University

Abstract

Nanomodified fiber-reinforced concrete is a building material for which the required characteristics of fracture toughness are a distinctive feature. Determination of the stress intensity factor of fiber-reinforced concrete makes it possible to correctly assess the resistance of the material during the formation and development of cracks. The proposed multi-parameter methodology for assessing the quality indicators of nanomodified fiber-reinforced concrete makes it possible to evaluate the quality of a fiber-reinforced concrete structure in construction and laboratory conditions. To carry out control at the construction site, modern and long-used methods of non-destructive testing are used: ultrasonic sounding, ultrasonic tomography, elastic rebound, separation with chipping. For laboratory studies, the technique provides for the manufacture of prism samples that can be molded or cut from the body of the structure. This methodology makes it possible to obtain in laboratory conditions such material parameters as tensile strength in bending, tensile strength in splitting, critical stress intensity factor for normal separation, critical stress intensity factor for transverse shear, energy consumption for individual stages of deformation and destruction of the sample, as well as to evaluate the uniformity of distribution fibers. Moreover, it is provided to obtain all the parameters on one sample from the series, which eliminates errors and inaccuracies in the quality indicators of the material associated with different conditions of hardening, molding, inaccuracies in duplicating the composition.

Publisher

Belarusian National Technical University

Subject

General Medicine

Reference20 articles.

1. Sadovskaya E. A., Leonovich S. N. (2022) Optimization of Composition of Nanofiber Concrete in Terms of Fracture Toughness by Matrix Modification. Nauka i Tekhnika = Science and Technique, 21 (6), 499–503 (in Russian). https://doi.org/10.21122/2227-1031-2022-21-6-499-503.

2. Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015–1019. https://doi.org/10.1007/s10891-020-02202-8.

3. Koleda E. A., Leonovich S. N., Zhdanok S. A. (2018) Results of tensile tests of Nanofibre Concrete with Complex Fiber Reinforcement. Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Ser.: Materialy. Konstruktsii. Tekhnologii = Vestnik of Volga State University of Technology. Series “Materials. Constructions. Technologies”, (2), 16–23 (in Russian).

4. Koleda E. A., Leonovich S. N. (2016) Non-Destructive Quality Control of Fiber-Reinforced Concrete Structures as a Component of the Risk Monitoring System During the Operation of a Production Facility. Sistemnye Tekhnologii = System Technologies, (2), 85–95 (in Russian).

5. Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2022) Fracture Toughness of Nanofiber-Reinforced Concrete on Normal Separation and In-Plane Shear. Journal of Engineering Physics and Thermophysics, 95 (4), 945–952. https://doi.org/10.1007/s10891-022-02551-6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3