Affiliation:
1. Belarusian National Technical University
Abstract
Nanomodified fiber-reinforced concrete is a building material for which the required characteristics of fracture toughness are a distinctive feature. Determination of the stress intensity factor of fiber-reinforced concrete makes it possible to correctly assess the resistance of the material during the formation and development of cracks. The proposed multi-parameter methodology for assessing the quality indicators of nanomodified fiber-reinforced concrete makes it possible to evaluate the quality of a fiber-reinforced concrete structure in construction and laboratory conditions. To carry out control at the construction site, modern and long-used methods of non-destructive testing are used: ultrasonic sounding, ultrasonic tomography, elastic rebound, separation with chipping. For laboratory studies, the technique provides for the manufacture of prism samples that can be molded or cut from the body of the structure. This methodology makes it possible to obtain in laboratory conditions such material parameters as tensile strength in bending, tensile strength in splitting, critical stress intensity factor for normal separation, critical stress intensity factor for transverse shear, energy consumption for individual stages of deformation and destruction of the sample, as well as to evaluate the uniformity of distribution fibers. Moreover, it is provided to obtain all the parameters on one sample from the series, which eliminates errors and inaccuracies in the quality indicators of the material associated with different conditions of hardening, molding, inaccuracies in duplicating the composition.
Publisher
Belarusian National Technical University
Reference20 articles.
1. Sadovskaya E. A., Leonovich S. N. (2022) Optimization of Composition of Nanofiber Concrete in Terms of Fracture Toughness by Matrix Modification. Nauka i Tekhnika = Science and Technique, 21 (6), 499–503 (in Russian). https://doi.org/10.21122/2227-1031-2022-21-6-499-503.
2. Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015–1019. https://doi.org/10.1007/s10891-020-02202-8.
3. Koleda E. A., Leonovich S. N., Zhdanok S. A. (2018) Results of tensile tests of Nanofibre Concrete with Complex Fiber Reinforcement. Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Ser.: Materialy. Konstruktsii. Tekhnologii = Vestnik of Volga State University of Technology. Series “Materials. Constructions. Technologies”, (2), 16–23 (in Russian).
4. Koleda E. A., Leonovich S. N. (2016) Non-Destructive Quality Control of Fiber-Reinforced Concrete Structures as a Component of the Risk Monitoring System During the Operation of a Production Facility. Sistemnye Tekhnologii = System Technologies, (2), 85–95 (in Russian).
5. Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2022) Fracture Toughness of Nanofiber-Reinforced Concrete on Normal Separation and In-Plane Shear. Journal of Engineering Physics and Thermophysics, 95 (4), 945–952. https://doi.org/10.1007/s10891-022-02551-6.