STRUCTURAL AND DESIGN SPECIFICS OF SPACE GRID SYSTEMS

Author:

Gasii G. M.

Abstract

The aim of the study is to identify main trends in the development of space grid structures. In order to reach the purpose it is necessary to conduct a review of the known structural concepts, nodal connections and specifics of the space grid structures and to make conclusions on feasibility improvement of the considered structural concepts that make it possible to develop new solutions without disadvantages residing in the analogues. Analysis of papers written by foreign and national scientists and devoted to theoretical, numerical and experimental studies of stress-strain state, influence of different factors on it and geometrical optimization and designing of space grid structures has been conducted in order to achieve the objectives. Space grid structures and, in particular, flat double-layer grid and most frequent nodes have been studied in the paper. The paper contains a short review of the history on development of space grid structures. It has been found that a rapid development of structural designs was caused by scientific and technical progress and, in particular, improvement of physical and mechanical properties of materials, development of calculation methods, application of software systems for simulating behavior of the structure under load, which significantly increased the calculation accuracy and reduced complexity of design. It has been also established that main parameters that have influence on effectiveness of a structural design are geometric dimensions of its modular elements, ratio of its depth to the span. The world experience on development of connection components has been studied in the paper. The paper presents general classification of nodal connections. Main advantages and disadvantages of existing space grid structures are highlighted and it allows to determine possible methods for their improvement. Theoretical research has permitted to establish that the main direction of spatial grid structures improvement consists in development of new node connection types. Several methods for node improvement have been proposed while taking into account the obtained results.

Publisher

Belarusian National Technical University

Reference45 articles.

1. Furche A. (2016) Tragkonstruktionen: Basiswissen für Architekten. Springer Vieweg. 210 (in German).

2. Shimanovsky O. V., Bespalov. S. M. (2002) Peculiar Features in Designing of Long Span Roof Structures on the Basis of Structural Plates. Budivnitstvo Ukrainy [Construction of Ukraine], (5), 21–24 (in Ukrainian).

3. Chilton J. (2000) Space Grid Structures. Boston, Architectural Press. 180. DOI: 10.4324/9780080498188.

4. Kancheli N. V. (2009) Building Space Structures. 3rd ?d. Moscow, Publishing House “ASV”. 112 (in Russian).

5. Lan T. T. (1999) Space Frame Structures. Boca Raton, CRC Press LLC. 129. DOI: 10.4324/9780080498188.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3