Affiliation:
1. School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
Abstract
The space grid structure is widely used in large-span and large-scale buildings due to its excellent stiffness and lightweight. However, the joint connection is complicated since many struts emanate from one joint. In this paper, we proposed a novel joint connection with five struts and a space grid structure called the bi-hexagon grid structure (BHGS). The mechanical behavior of the proposed grids was investigated by comparing different double-layer and multi-layer grids by virtue of the Ansys parameter design language. The results show that the proposed structure can significantly reduce material consumption and improve installation efficiency. The comparison results also show the BHGS has a good stress distribution under uniform surface loads. However, the deformation is slightly large, which is acceptable considering the practical application. A configuration method and mechanical behaviors of a double-layer dome based on the bi-hexagon grid structure were presented as a particular application as well as the structural optimization. In addition, an assembly strategy was further given to realize the modular design.
Funder
science and technology innovation plan of shanghai science and technology commission