Application of Magnetic Noise Method to Control the Mechanical Anisotropy of Ferromagnetic Materials

Author:

Busko V. N.1,Osipov A. A.1

Affiliation:

1. Institute of Applied Physics of the National Academy of Science of Belarus

Abstract

Presence of anisotropy of the ferromagnetic materials' properties determines the need for its research and control, since it has a significant impact on the basic physicomechanical characteristics of details, products and constructions. The aim of the work was to experimentally investigate the possibility of using the magnetic noise method for non-destructive testing of mechanical properties of ferromagnetic materials particularly value of the coefficient of normal anisotropy Rn of sheet metal, mechanical stresses under elastic deformation of electrical steel and the anisotropy of the physical and mechanical properties of ferromagnetic materials.Since the mechanical anisotropy is related to the magnetic anisotropy, the magnetic method of the Barkhausen effect (MBE) was used in its study, the informative parameters of which belong to the group of magnetic anisotropy. Comparison of the results of anisotropy evaluation on a set of samples of stamped sheet steel using the MBE with values Rn measured by the manufacturer showed their close match. This revealed the possibility of Rn level evaluation using the MBE. Device for circular rotation of the Barkhausen transducer on the sample surface and device for forming of elastic bending stresses in the sample were constructed. To study the magnetic anisotropy in various materials and the impact of elastic tensile and compressive stresses by bending on it using the MBE.It has been found that the elastic deformation in samples of electrical steel leads to dramatic change of the magnetic noise level and the shape of the circular diagrams, taking into account the sign of the stresses generated in the sample. It was established that as a result of cold rolling in the production process, electrical steel samples have a pronounced texture due to the direction of rolled sheet. The created elastic stresses in the considered range practically do not change the texture (induced crystallographic anisotropy) after the material rolling.The results can be useful for studying, monitoring and testing of anisotropy, crystallographic texture, structural heterogeneity of ferromagnetic materials in the form of sheet metal, sheet steel and coil steel, sheet metal forming and for solving other problems using the magnetic noise method in aboratory and workshop conditions.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference17 articles.

1. Radchenko A.V., Radchenko P.A. Numerical modeling of development of fracture in anisotropic composite vaterials at low-velocity loading. Journal of Materials Science, 2010, vol. 46, no. 8, pp. 2720–2725. DOI: 10.1007/s10853-010-5142-8

2. Gorkunov E.S., Dragoschanski Y.N. Barkhausen Noise and its Utilization in Structural Analysis of Ferromagnetic Materials, Reviev Article I. Russian Journal of Nondestructive Testing, 1999, no. 6, pp. 3–23.

3. Tiunov V.F. [Monitoring of the magnetic permeability heterogeneity of anisotropic electrical steel sheets] Defektoskopiya [Defectoscopy], 2019, no. 3, pp. 46–49. (in Russian).

4. Korzunin G.S., Bulychev O.A., Sysolyatina I.P., Chistyakov V.K. The effect of the Anisotropy of Magnetic Properties of electrical steel on losses in power transformer cores. Russian Journal of Nondestructive Testing, 2010, vol. 46, no. 9, pp. 632–637. DOI: 10.1134/S1061830910090020

5. Borsutzki M., Kroos J., Reimche W., Schneider E. Magnetische und akustische Verfahren zur Materialcharakterisierung von Stahlblechen, Stahl und Eisen, 2000, 120, H. 12, pp. 115–121.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3