SYSTEM OF STABILIZATION OF REACTIVE MAGNETRON SPUTTERING PROCESS

Author:

Burmakou A. P.,Kuleshov V. N.,Stoliarov A. V.

Abstract

Film coatings today allow to create large number of diverse structures in electronics, microelectronics, optics, architecture and construction. Leading technologies in this area are magnetron deposition technologies. The problem of magnetron deposition methods is insufficient reproducibility of the composition and properties of coatings, caused by the instability of the parameters of a magnetron discharge in the presence of a reactive gas. There are stabilization systems that make it possible to make reproducible films, but all of them have a number of issues. The aim of the work was to develop a system for stabilizing the reactive magnetron sputtering process for film coating technologies that will eliminate the described shortcomings of existing systems.The developed system of stabilization: automatic and cumulative of sensors, actuators, microcomputer with control software, as well as devices providing interaction of sensors and actuators with a microcomputer. The sensors of the system may be vacuum gauges or pressure sensors, discharge current and voltage sensors of sprays, optical sensors for recording spectral element processes, absorption of a plasma of a magnetron discharge. The actuators of the system are gas flowers, as well as valves. Number and type of sensors and actuators from existing technologies and requirements for ongoing processes. The control software allows to flexibly adjust the system (to form control loops, then to assign sensors and actuators in accordance and to choose control algorithms, to set parameters and operating modes of control loops). Thus, the developed system is adaptable to a wide range of process plants and processes.System operability was confirmed by the process of magnetron deposition of a titanium oxide film. The deviation of the level of the sensor signals from the required values during the process did not exceed 3 %, which allows obtaining high-quality coatings.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3