Applying artificial intelligence to predict falls for inpatient

Author:

Chen Ya-Huei,Xu Jia-Lang

Abstract

ObjectiveFalls are adverse events which commonly occur in hospitalized patients. Inpatient falls may cause bruises or contusions and even a fractures or head injuries, which can lead to significant physical and economic burdens for patients and their families. Therefore, it is important to predict the risks involved surrounding hospitalized patients falling in order to better provide medical personnel with effective fall prevention measures.SettingThis study retrospectively used EHR data taken from the Taichung Veterans General Hospital clinical database between January 2015 and December 2019.ParticipantsA total of 53,122 patient records were collected in this study, of which 1,157 involved fall patients and 51,965 were non-fall patients.Primary and secondary outcome measureThis study integrated the characteristics and clinical data of patients with falls and without falls using RapidMiner Studio as an analysis tool for various models of artificial intelligence. Utilization of 8 differ models to identify the most important factors surrounding inpatient fall risk. This study used the sensitivity, specificity, and area under the ROC curve to compute the data by 5-fold cross-validation and then compared them by pairwise t-tests.ResultsThe predictive classifier was developed based upon the gradient boosted trees (XGBoost) model which outperformed the other seven baseline models and achieved a cross-validated ACC of 95.11%, AUC of 0.990, F1 score of 95.1%. These results show that the XGBoost model was used when dealing with multisource patient data, which in this case delivered a highly predictive performance on the risk of inpatient falls.ConclusionMachine learning methods identify the most important factors regarding the detection of inpatients who are at risk of falling, which in turn would improve the quality of patient care and reduce the workloads of the nursing staff when making fall assessments.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3