Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics

Author:

Cheng Chi-Yung,Kung Chia-Te,Chen Fu-Cheng,Chiu I-Min,Lin Chun-Hung Richard,Chu Chun-Chieh,Kung Chien Feng,Su Chih-Min

Abstract

PurposeTo build machine learning models for predicting the risk of in-hospital death in patients with sepsis within 48 h, using only dynamic changes in the patient's vital signs.MethodsThis retrospective observational cohort study enrolled septic patients from five emergency departments (ED) in Taiwan. We adopted seven variables, i.e., age, sex, systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, and body temperature.ResultsAmong all 353,253 visits, after excluding 159,607 visits (45%), the study group consisted of 193,646 ED visits. With a leading time of 6 h, the convolutional neural networks (CNNs), long short-term memory (LSTM), and random forest (RF) had accuracy rates of 0.905, 0.817, and 0.835, respectively, and the area under the receiver operating characteristic curve (AUC) was 0.840, 0.761, and 0.770, respectively. With a leading time of 48 h, the CNN, LSTM, and RF achieved accuracy rates of 0.828, 0759, and 0.805, respectively, and an AUC of 0.811, 0.734, and 0.776, respectively.ConclusionBy analyzing dynamic vital sign data, machine learning models can predict mortality in septic patients within 6 to 48 h of admission. The performance of the testing models is more accurate if the lead time is closer to the event.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3