Predictive models for short-term mortality and length of hospital stay among adults with community-onset bacteraemia before and during the COVID-19 pandemic: application of early data dynamics

Author:

Lee Ching-Chi,Hung Yuan-Pin,Hsieh Chih-Chia,Ho Ching-Yu,Hsu Chiao-Ya,Li Cheng-Te,Ko Wen-Chien

Abstract

Abstract Background The development of scoring systems to predict the short-term mortality and the length of hospital stay (LOS) in patients with bacteraemia is essential to improve the quality of care and reduce the occupancy variance in the hospital bed. Methods Adults hospitalised with community-onset bacteraemia in the coronavirus disease 2019 (COVID-19) and pre-COVID-19 eras were captured as the validation and derivation cohorts in the multicentre study, respectively. Model I incorporated all variables available on day 0, Model II incorporated all variables available on day 3, and Models III, IV, and V incorporated the variables that changed from day 0 to day 3. This study adopted the statistical and machine learning (ML) methods to jointly determine the prediction performance of these models in two study cohorts. Results A total of 3,639 (81.4%) and 834 (18.6%) patients were included in the derivation and validation cohorts, respectively. Model IV achieved the best performance in predicting 30-day mortality in both cohorts. The most frequently identified variables incorporated into Model IV were deteriorated consciousness from day 0 to day 3 and deteriorated respiration from day 0 to day 3. Model V achieved the best performance in predicting LOS in both cohorts. The most frequently identified variables in Model V were deteriorated consciousness from day 0 to day 3, a body temperature ≤ 36.0 °C or ≥ 39.0 °C on day 3, and a diagnosis of complicated bacteraemia. Conclusions For hospitalised adults with community-onset bacteraemia, clinical variables that dynamically changed from day 0 to day 3 were crucial in predicting the short-term mortality and LOS.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3