Design and Assessment of Convolutional Neural Network Based Methods for Vitiligo Diagnosis

Author:

Zhang Li,Mishra Suraj,Zhang Tianyu,Zhang Yue,Zhang Duo,Lv Yalin,Lv Mingsong,Guan Nan,Hu Xiaobo Sharon,Chen Danny Ziyi,Han Xiuping

Abstract

Background: Today's machine-learning based dermatologic research has largely focused on pigmented/non-pigmented lesions concerning skin cancers. However, studies on machine-learning-aided diagnosis of depigmented non-melanocytic lesions, which are more difficult to diagnose by unaided eye, are very few.Objective: We aim to assess the performance of deep learning methods for diagnosing vitiligo by deploying Convolutional Neural Networks (CNNs) and comparing their diagnosis accuracy with that of human raters with different levels of experience.Methods: A Chinese in-house dataset (2,876 images) and a world-wide public dataset (1,341 images) containing vitiligo and other depigmented/hypopigmented lesions were constructed. Three CNN models were trained on close-up images in both datasets. The results by the CNNs were compared with those by 14 human raters from four groups: expert raters (>10 years of experience), intermediate raters (5–10 years), dermatology residents, and general practitioners. F1 score, the area under the receiver operating characteristic curve (AUC), specificity, and sensitivity metrics were used to compare the performance of the CNNs with that of the raters.Results: For the in-house dataset, CNNs achieved a comparable F1 score (mean [standard deviation]) with expert raters (0.8864 [0.005] vs. 0.8933 [0.044]) and outperformed intermediate raters (0.7603 [0.029]), dermatology residents (0.6161 [0.068]) and general practitioners (0.4964 [0.139]). For the public dataset, CNNs achieved a higher F1 score (0.9684 [0.005]) compared to the diagnosis of expert raters (0.9221 [0.031]).Conclusion: Properly designed and trained CNNs are able to diagnose vitiligo without the aid of Wood's lamp images and outperform human raters in an experimental setting.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin Type Diversity in Skin Lesion Datasets: A Review;Current Dermatology Reports;2024-08-14

2. An Embedded Vision System for Autoimmune Skin Diseases Classification Based on Deep Learning: A Preliminary Study;2024 IEEE Sensors Applications Symposium (SAS);2024-07-23

3. Deep Learning-Based Segmentation of Lesions from Wide-Field Vitiligo Images;International Journal of Pattern Recognition and Artificial Intelligence;2024-07-16

4. Boosting Medical Image Classification with Segmentation Foundation Model;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

5. Optimizing vitiligo diagnosis with ResNet and Swin transformer deep learning models: a study on performance and interpretability;Scientific Reports;2024-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3