Optimizing vitiligo diagnosis with ResNet and Swin transformer deep learning models: a study on performance and interpretability

Author:

Zhong Fan,He Kaiqiao,Ji Mengqi,Chen Jianru,Gao Tianwen,Li Shuli,Zhang Junpeng,Li Chunying

Abstract

AbstractVitiligo is a hypopigmented skin disease characterized by the loss of melanin. The progressive nature and widespread incidence of vitiligo necessitate timely and accurate detection. Usually, a single diagnostic test often falls short of providing definitive confirmation of the condition, necessitating the assessment by dermatologists who specialize in vitiligo. However, the current scarcity of such specialized medical professionals presents a significant challenge. To mitigate this issue and enhance diagnostic accuracy, it is essential to build deep learning models that can support and expedite the detection process. This study endeavors to establish a deep learning framework to enhance the diagnostic accuracy of vitiligo. To this end, a comparative analysis of five models including ResNet (ResNet34, ResNet50, and ResNet101 models) and Swin Transformer series (Swin Transformer Base, and Swin Transformer Large models), were conducted under the uniform condition to identify the model with superior classification capabilities. Moreover, the study sought to augment the interpretability of these models by selecting one that not only provides accurate diagnostic outcomes but also offers visual cues highlighting the regions pertinent to vitiligo. The empirical findings reveal that the Swin Transformer Large model achieved the best performance in classification, whose AUC, accuracy, sensitivity, and specificity are 0.94, 93.82%, 94.02%, and 93.5%, respectively. In terms of interpretability, the highlighted regions in the class activation map correspond to the lesion regions of the vitiligo images, which shows that it effectively indicates the specific category regions associated with the decision-making of dermatological diagnosis. Additionally, the visualization of feature maps generated in the middle layer of the deep learning model provides insights into the internal mechanisms of the model, which is valuable for improving the interpretability of the model, tuning performance, and enhancing clinical applicability. The outcomes of this study underscore the significant potential of deep learning models to revolutionize medical diagnosis by improving diagnostic accuracy and operational efficiency. The research highlights the necessity for ongoing exploration in this domain to fully leverage the capabilities of deep learning technologies in medical diagnostics.

Funder

National Natural Science Foundation of China Mathematics Tianyuan Foundation

the R&D project of Pazhou Lab

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3