Greenhouse gas balance and mitigation of pasture-based dairy production systems in the Brazilian Atlantic Forest Biome

Author:

Oliveira Patrícia Perondi Anchão,Berndt Alexandre,Pedroso André de Faria,Alves Teresa Cristina,Lemes Amanda Prudêncio,Oliveira Bia Anchão,Pezzopane José Ricardo Macedo,Rodrigues Paulo Henrique Mazza

Abstract

Brazilian cattle production is mostly carried out in pastures, and the need to mitigate the livestock's greenhouse gas (GHG) emissions and its environmental footprint has become an important requirement. The adoption of well-suited breeds and the intensification of pasture-based livestock production systems are alternatives to optimize the sector's land use. However, further research on tropical systems is necessary. The objective of this research was to evaluate the effect of Holstein (HO) and Jersey–Holstein (JE x HO) crossbred cows in different levels of pasture intensification (continuous grazing system with low stocking rate–CLS; irrigated rotational grazing system with high stocking rate–RHS), and the interaction between these two factors on GHG mitigation. Twenty-four HO and 24 JE x HO crossbred dairy cows were used to evaluate the effect of two grazing systems on milk production and composition, soil GHG emissions, methane (CH4) emission, and soil carbon accumulation (0–100 cm). These variables were used to calculate carbon balance (CB), GHG emission intensity, the number of trees required to mitigate GHG emission, and the land-saving effect. The number of trees necessary to mitigate GHG emission was calculated, considering the C balance within the farm gate. The mitigation of GHG emissions comes from the annual growth rate and accumulation of C in eucalyptus trees' trunks. The CB of all systems and genotypes presented a deficit in carbon (C); there was no difference for genotypes, but RHS was more deficient than CLS (-4.99 to CLS and −28.72 to RHS ton CO2e..ha−1.year−1). The deficit of C on GHG emission intensity was similar between genotypes and higher for RHS (−0.480 to RHS and −0.299 to CLS kg CO2e..kg FCPCmilk−1). Lower GHG removals (0.14 to CLS higher than 0.02 to RHS kg CO2e..kg FCPCmilk−1) had the greatest influence on the GHG emission intensity of milk production. The deficit number of trees to abatement emissions was higher to HO (−46.06 to HO and −38.37 trees/cow to JE x HO) and to RHS (−51.9 to RHS and −33.05 trees/cow to CLS). However, when the results are expressed per ton of FCPCmilk, there was a difference only between pasture management, requiring −6.34 tree. ton FCPCmilk−1 for the RHS and −3.99 tree. ton FCPCmilk−1 for the CLS system. The intensification of pastures resulted in higher milk production and land-saving effect of 2.7 ha. Due to the reservation of the pasture-based dairy systems in increasing soil C sequestration to offset the GHG emissions, especially enteric CH4, planting trees can be used as a mitigation strategy. Also, the land-save effect of intensification can contribute to the issue, since the area spared through the intensification in pasture management becomes available for reforestation with commercial trees.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Frontiers Media SA

Subject

General Veterinary

Reference56 articles.

1. Produção da Pecuária Municipal2020

2. Mapa do Leite2022

3. Carta Leite - A Balança Comercial De Lácteos Em 2021 Foi A Melhor Dos Últimos Seis Anos HonigmannS 2021

4. Certification and added value for farm productions;Ravaglia,2018

5. Greenhouse gases inventory and carbon balance of two dairy systems obtained from two methane-estimation methods;Cunha;Sci Total Environ.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3