Polymeric Organo-Hydrogels: Novel Biomaterials for Medical, Pharmaceutical, and Drug Delivery Platforms

Author:

Aktas Nahit,Alpaslan Duygu,Dudu Tuba Erşen

Abstract

In the recent two decades, tremendous devices and materials such as stents, biomimetic organs, scaffolds, and vessels have been developed for medical purposes. When such devices are utilized in the body, the side effects or biocompatibility of the materials have to be studied extensively. Interdisciplinary studies have reviled numerous strategies to overcome adverse body reactions against implanted devices. Besides naturally occurring materials such as collagen, chitosan, hyaluronic acid, and dextran, various synthetic and modified materials such as poly(lactic acid), poly(ethylene glycol), poly(vinyl alcohol), and poly(acrylamide) have been accomplished. In this context, progress in polymer science makes hydrogels a valuable candidate for those utilizations. Moreover, hydrogels received enormous attention as drug delivery devices because of their unique properties, such as soft structure and responsive capabilities based on the functional group attached. Particularly, the developments in synthetic materials have brought out numerous materials for medical and pharmaceutical applications. In recent studies, organo-hydrogels, a branch of hydrogels, have drawn considerable attention over hydrogels because of superior properties such as the coexistence of organic and aqueous phases and viscoelastic bi-phasic natures. They were prepared in bulk forms and nano-scale dimensions, which allow them to be utilized more extensively. These incredible structures provide them with extensive features to be utilized from head to toe in every aspect of health care application. In this short review, we will focus on some of the pioneering perspectives of organo-hydrogels particularly accomplished in clinical therapy and the use of their biodegradable, target-responsive properties as sensing components in novel microscale apertures.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3