In vitro physicochemical and biological properties of titanium alloy, zirconia, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone

Author:

Su Jingjing,Xing Xiaojie,Lin Yanjun,Gao Yuerong,Xing Yifeng,Xu Zhiqiang,Chen Jiang

Abstract

Implant repair is a common means to restore the normal function of the hard tissues (bone or teeth). At present, the commonly and potentially used implant materials include titanium alloy (Ti), zirconia (Zr), polyetheretherketone (PEEK), and 30% carbon fiber reinforced PEEK (CFR-PEEK). This study compares their physicochemical and biological properties, including surface morphology, contact angle, nano hardness, elastic modulus, and the impact on the proliferation and osteogenic differentiation of bone marrow mesenchyml stem cell. Additionally, the differences in bacteria adhesion rates among materials were compared. CFR-PEEK had the highest contact angle, followed by PEEK, Zr, and Ti. Zr had the highest nano hardness and modulus of elasticity, followed by Ti, CRF-PEEK, and PEEK. There was no statistically significant difference in cytotoxicity among materials based on the liquid extract test. However, the relative cell proliferation rate on the surface of CFR-PEEK was slightly lower than that of Ti and Zr. Moreover, alkaline phosphatase activity, extracellular matrix mineralization, and osteogenic gene expression with the Ti and Zr materials were higher than with the PEEK and CFR-PEEK materials at Day 7, and Zr showed the highest osteogenic gene expression level among materials at Day 14. Ti had the greatest number of bacterial colonies that adhered to it, followed by Zr, CFR-PEEK, and PEEK. While the mechanical properties of PEEK and CFR-PEEK were closer to bone tissue and their anti-adhesion effect against bacteria was better than those of Ti and Zr, modification methods are needed to improve the osteogenic properties of these biopolymers.

Funder

Fujian Provincial Health Technology Project

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3