Effect of titanium dioxide as nanomaterials on mechanical and durability properties of rubberised concrete by applying RSM modelling and optimizations

Author:

Abdullah Gamil M. S.,Chohan Imran Mir,Ali Mohsin,Bheel Naraindas,Ahmad Mahmood,Najeh Taoufik,Gamil Yaser,Almujibah Hamad R.

Abstract

The use of rubber aggregates derived from discarded rubber tyres in concrete is a pioneering approach to replacing natural aggregate (NA) and promoting sustainable building practices. Recycled aggregate in concrete serves the dual purpose of alleviating the accumulation of discarded rubber tyres on the planet and providing a more sustainable alternative to decreasing natural aggregate. Due to fact that the crumb rubber (CR) decreases the strength when used in concrete, incorporating titanium dioxide (TiO2) as a nanomaterial to counteract the decrease in strength of crumb rubber concrete is a potential solution. Response Surface Methodology was developed to generate sixteen RUNs which contains different mix design by providing two input parameters like TiO2 at 1%, 1.5%, and 2% by cement weight and CR at 10%, 20%, and 30% as substitutions for volume of sand. These mixtures underwent testing for 28 days to evaluate their mechanical, deformation, and durability properties. Moreover, the compressive strength, tensile strength, flexural strength and elastic modulus were recorded by 51.40 MPa, 4.47 MPa, 5.91 MPa, and 40.15 GPa when 1.5% TiO2 and 10% CR were added in rubberised concrete after 28 days respectively. Furthermore, the incorporation of TiO2 led to reduced drying shrinkage and sorptivity in rubberized concrete, especially with increased TiO2 content. The study highlights that TiO2 inclusion refines pore size and densifies the interface between cement matrix and aggregate in hardened rubberized concrete. This transformative effect results in rubberized concrete demonstrating a commendable compressive strength comparable to normal concrete.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3