A comprehensive study on the impact of human hair fiber and millet husk ash on concrete properties: response surface modeling and optimization

Author:

Bheel Naraindas,Shams Muhammad Alamgeer,Sohu Samiullah,Buller Abdul Salam,Najeh Taoufik,Ismail Fouad Ismail,Benjeddou Omrane

Abstract

AbstractRevolutionizing construction, the concrete blend seamlessly integrates human hair (HH) fibers and millet husk ash (MHA) as a sustainable alternative. By repurposing human hair for enhanced tensile strength and utilizing millet husk ash to replace sand, these materials not only reduce waste but also create a durable, eco-friendly solution. This groundbreaking methodology not only adheres to established structural criteria but also advances the concepts of the circular economy, representing a significant advancement towards environmentally sustainable and resilient building practices. The main purpose of the research is to investigate the fresh and mechanical characteristics of concrete blended with 10–40% MHA as a sand substitute and 0.5–2% HH fibers by applying response surface methodology modeling and optimization. A comprehensive study involved preparing 225 concrete specimens using a mix ratio of 1:1.5:3 with a water-to-cement ratio of 0.52, followed by a 28 day curing period. It was found that a blend of 30% MHA and 1% HH fibers gave the best compressive and splitting tensile strengths at 28 days, which were 33.88 MPa and 3.47 MPa, respectively. Additionally, the incorporation of increased proportions of MHA and HH fibers led to reductions in both the dry density and workability of the concrete. In addition, utilizing analysis of variance (ANOVA), response prediction models were created and verified with a significance level of 95%. The models' R2 values ranged from 72 to 99%. The study validated multi-objective optimization, showing 1% HH fiber and 30% MHA in concrete enhances strength, reduces waste, and promotes environmental sustainability, making it recommended for construction.

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3