Eco-friendly concrete using by-products as partial replacement of cement

Author:

El-Nadoury Wegdan W.

Abstract

The current challenge facing the construction industry is to produce sustainable concrete at the lowest feasible cost. One obstacle to that is the demand for an excessive amount of cement. The reduction of cement content can be achieved by its partial replacement with by-product materials that attain an appropriate pozzolanic index. Two by-products namely; Ceramic waste powder (CWP) and rice husk ash (RHA) are remarkably formed throughout tiles and rice production. Using these by-products as a partial substitution for cement reduces landfills, the cost of concrete, and climate change due to cement production. This paper investigates the effect of replacing 5%, 15%, 20%, 25%, and 30% of cement with CWP. Varied proportions of RHA; 5%, 10%, 15%, and 25% were added to the mix with the optimum CWP. The concrete mixture was proportioned to produce M35-grade concrete. Properties of concrete were assessed concerning workability, compressive, splitting tensile, and flexural strength. The results are compared to conventional concrete with 0% replacement. Results identified that 20% substitution of cement by CWP is the optimum percentage. It increases the compressive, splitting tensile, and flexural strength by 11%, 20%, and 12.5% respectively. Increasing the percentage up to 30% has minor effect on tensile and flexural strength but has destructive effect on compressive strength. Blending cement with CWP and RHA additionally improves the mechanical properties. The combination of 20% CWP/10% RHA propose superior strength, it increases the compressive, tensile, and flexural strength by 14%, 28%, and 19% compared to the control concrete.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference67 articles.

1. Evaluation of ordinary concrete having ceramic waste powder as partial replacement of cement;Abubakr,2019

2. Experimental investigation on rice husk ash as cement replacement on concrete production;Alex;Constr. Build. Mater.,2016

3. Performance of ceramic tile powder as a pozzolanic material in concrete;Ali;Asian J. Civ. Eng.,2012

4. Mechanical and durability properties of aerated concrete incorporating rice husk ash (RHA) as partial replacement of cement;Ali;Crystals,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3