Processing and Preparation Method for High-Quality Opto-Electronic Perovskite Film

Author:

Chen Zheng,He Ping,Wu Dan,Chen Chen,Mujahid Muhammad,Li Ye,Duan Yu

Abstract

The key to improving the energy conversion efficiency of perovskite solar cells lies in the optimization of the film morphology. The optical and electrical properties of the perovskite film, such as light absorption, carrier diffusion length, and charge transport, are all directly affected by the film morphology. Therefore, this review starts from the perovskite solar cells structure, and it summarizes the state-of-art perovskite film fabrication technologies and the caused film morphology to the performance perovskite solar cells. The spin coating method has an enormous waste of materials and only a small area of the device can be utilized. It is difficult to be used in commercial manufacturing. However, due to the high efficiency of this preparation method, it is irreplaceable in the initial research and development of perovskite materials, and so this method will be popular for a long time in the laboratory. Chemical vapor deposition and thermal vapor deposition have high technical requirements and a good repeatability of processing and manufacturing, and large-scale production can be realized. It may be the first technology to admit industrial application; the scratch coating method and slot-die have significant technical aspects. The similarity of the roll-to-roll manufacturing technology is also an efficient preparation method. Still, to achieve high-efficiency devices, it is necessary to consider the thickness control of each functional layer, and to find or prepare perovskite paste. Finally, we summarized the various fabrication processes and the prospects for the commercialization of perovskite solar cells. We predict that to achieve the commercialization of perovskite solar cells, the existing fabrication technologies should be optimized and more studies should be conducted.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3