Thermal investigation into the Oldroyd-B hybrid nanofluid with the slip and Newtonian heating effect: Atangana–Baleanu fractional simulation

Author:

Ali Qasim,Amir Muhammad,Raza Ali,Khan Umair,Eldin Sayed M.,Alotaibi Abeer M.,Elattar Samia,Abed Ahmed M.

Abstract

The significance of thermal conductivity, convection, and heat transportation of hybrid nanofluids (HNFs) based on different nanoparticles has enhanced an integral part in numerous industrial and natural processes. In this article, a fractionalized Oldroyd-B HNF along with other significant effects, such as Newtonian heating, constant concentration, and the wall slip condition on temperature close to an infinitely vertical flat plate, is examined. Aluminum oxide (Al2O3) and ferro-ferric oxide (Fe3O4) are the supposed nanoparticles, and water (H2O) and sodium alginate (C6H9NaO7) serve as the base fluids. For generalized memory effects, an innovative fractional model is developed based on the recently proposed Atangana–Baleanu time-fractional (AB) derivative through generalized Fourier and Fick’s law. This Laplace transform technique is used to solve the fractional governing equations of dimensionless temperature, velocity, and concentration profiles. The physical effects of diverse flow parameters are discussed and exhibited graphically by Mathcad software. We have considered 0.15α0.85,2Pr9,5Gr20,0.2ϕ1,ϕ20.8,3.5Gm8, 0.1 Sc 0.8, and 0.3λ1,λ21.7. Moreover, for validation of our present results, some limiting models, such as classical Maxwell and Newtonian fluid models, are recovered from the fractional Oldroyd-B fluid model. Furthermore, comparing the results between Oldroyd-B, Maxwell, and viscous fluid models for both classical and fractional cases, Stehfest and Tzou numerical methods are also employed to secure the validity of our solutions. Moreover, it is visualized that for a short time, temperature and momentum profiles are decayed for larger values of α, and this effect is reversed for a long time. Furthermore, the energy and velocity profiles are higher for water-based HNFs than those for the sodium alginate-based HNF.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3