Insight into the significance of ramped wall temperature and ramped surface concentration: The case of Casson fluid flow on an inclined Riga plate with heat absorption and chemical reaction

Author:

Asogwa Kanayo K.1,Bilal Sardar M.2,Animasaun Isaac L.3,Mebarek-Oudina Fateh M.4

Affiliation:

1. Department of Mathematics , Nigeria Maritime University, Okerenkoko , Delta Nigeria

2. Department of Mathematics , Air University , P. A. F Complex Sector E-9 , Islamabad , , Pakistan

3. Department of Mathematical Sciences, Fluid Dynamics and Survey Research Group , Federal University of Technology Akure , PMB 704 , Nigeria

4. Department of Physics, Faculty of Sciences , University of 20 aout 1955-Skikda , Skikda , Algeria

Abstract

Abstract The importance of heat absorption and chemical reactions and their impact in engineering is increasingly appreciated. However, little is known about the effect of chemical reaction and heat absorption of ramped wall temperature and ramped surface concentration on a Casson fluid flow over a rapidly accelerated inclined Riga plate. The aim of the study, among other findings along an inclined Riga plate, is to address the impact of heat sink and chemical reaction over a ramped temperature and ramped surface concentration. By introducing relevant similarity variables, the dimensional governing equations are non-dimensionalized and parameterized. After that, the derived parameterized governing equations are solved analytically using the Laplace transform method. Graphs are used to discuss and analyse the effects of various physical parameters on momentum, energy, and concentration. The latest findings are verified by comparing them to previous results. Tables are also used to determine skin friction, Nusselt number, and Sherwood number expressions. Comparatively, it's worth noting that chemical reaction, Casson, and heat absorption parameters tend to escalate Skin friction for both ramped temperature and ramped surface concentration. Moreso, an increase in the chemical reaction and heat absorption parameters induces a decrease in the momentum distribution.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3