An Experimental Investigation on the Repairing Performance and Fatigue Life of Asphalt Pavement Potholes With an Inclined Interface Joint

Author:

Li Linyu,Huang Yangquan,Shao Zhutao,Ren Dongya

Abstract

A pothole is a typical structural damage of asphalt pavements that significantly influence the life of asphalt pavements and driving safety. The durability of the existing pit repair methods is generally low. The existing studies in the context of pothole repair mainly focus on the selection and the amount of tack coat materials, nonetheless, very limited studies emphasize the effect of the joint interface shape. This study aims to investigate the influence of the interface joint shape on the service life of pothole repair by experimental testing. The strength and fatigue behavior of the joints were studied and the effectiveness of pothole repairs was evaluated under various conditions, including four temperature levels (5, 10, 15 and 25°C), four strain levels (750 με, 1,000 με, 1,250 με, and 1,500 με) and three loading frequencies (2, 5, and 10 Hz). The optimal interface joint shape was obtained by orthogonal tests. The results indicated that the bond strength and fatigue life of the high viscoelastic emulsified asphalt with an area density of 0.6 kg/m2 in the form of a 30° inclination joint was 473 and 80 times higher than those of traditional pothole repair (i.e., vertical joint form and no tack coat), respectively. Finally, a prediction model was proposed for the interface joint fatigue life considering external parameters through multiple regression analyses. This prediction model can provide a reference for the further study of asphalt pavement pothole repair.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3