Effect of Material Composition on Freeze-Thaw Resistance of Asphalt Fine Aggregate Matrix at Low-Temperatures From Mesoscopic Perspective

Author:

Gong Xiangbing,Zheng Heqi,Liu Wei,Li Xi

Abstract

To explore the significant factors related to the cracking resistance at low temperatures of asphalt mixture from mesoscopic perspective, asphalt fine aggregate matrix (FAM) was selected as the researched material because of its important role in mesoscopic structure of asphalt mixture. Bending Beam Rheometer (BBR) was utilized to investigate low-temperature properties of FAM. Due to the frequent occurrence of freeze-thaw action in seasonally frozen regions, this paper introduces a freeze-thaw cycle test. The structural characteristics of internal air voids in FAM and hot-mix asphalt (HMA) were analyzed using the industrial Computerized Tomography (CT). Results indicate that frost heaving damage of FAM-2.36 is more obvious than that of FAM-1.18, and the damage level increases as the bath temperature rises. After 32 freeze-thaw cycles, FAM-1.18 exhibits the rise of creep stiffness than original beams, and the hardening degree become serious with the decease of temperature. It could be concluded that the BBR has been proved to be an effective tool in evaluating the low-temperature properties of FAM. The expanding limit of small air voids and the hardening of binder in rich asphalt FAM contribute to completely different mechanisms of freezing-thawing damage within FAM. Therefore, asphalt content, fine aggregate passing rate and air voids size could be optimized through BBR test of FAM subjected to freeze-thaw cycle.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3