A review of non-destructive methods for the detection tiny defects within organic insulating materials

Author:

Zhang Xinlong,Cheng Li,Liu Yunfan,Tao Bo,Wang Jiuyi,Liao Ruijin

Abstract

In recent years, solid organic materials such as silicone rubber and epoxy resin have been widely used in electrical equipment due to their excellent insulation properties. However, as a result of manufacturing and design flaws as well as aging issues during operation, the insulating materials in the linked state no longer fit tightly and tiny structural defects (defect size less than 10 mm) develop, such as debonding at the composite interface, pores or cracks within the insulating material, etc. Tiny defects are prone to partial discharges and breakdowns, compromising the safety of high-voltage power equipment, particularly when subjected to strong electric fields. Therefore, it is necessary to carry out non-destructive testing (NDT) for such tiny defects. Such defects are small in size, easily buried in the material, and even some are wrapped in metal, which in turn requires very high detection accuracy, but traditional methods are difficult to achieve, so NDT technologies for tiny defects within insulating materials have become a research hotspot in the field of electric power in recent years. This paper firstly introduces the sources of tiny defects in solid organic insulating materials for electrical equipment. Secondly, the harm caused by structural defects is elaborated. Finally, emerging NDT methods and their advantages and limitations in defect detection are described in detail. The review aims to provide the reader with a comprehensive overview of most of the NDT techniques used in the detection of tiny defects within solid organic insulating materials for electrical equipment and their most salient features.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference128 articles.

1. Applications of ultrasonic techniques in oil and gas pipeline industries: A review;Alobaidi;Am. J. Operations Res.,2015

2. A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique;Arias;Wave Motion,2004

3. Boron-free fibers for prevention of acid induced brittle fracture of composite insulator GRP rods;Armentrout;IEEE Trans. Power Deliv.,2003

4. Microwave noncontact examination of disbond and thickness variation in stratified composite media;Bakhtiari;IEEE Trans. Microw. Theory Tech.,1994

5. Interfacial aging in composite insulators as a result of partial discharge activity;Bastidas,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3