A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis

Author:

Chacón Ximena Carolina Acaro1ORCID,Laureti Stefano1ORCID,Ricci Marco1ORCID,Cappuccino Gregorio1ORCID

Affiliation:

1. Department of Informatics, Modelling, Electronics and Systems Engineering, University of Calabria, 87036 Arcavacata, Italy

Abstract

Lithium-ion batteries are considered the most suitable option for powering electric vehicles in modern transportation systems due to their high energy density, high energy efficiency, long cycle life, and low weight. Nonetheless, several safety concerns and their tendency to lose charge over time demand methods capable of determining their state of health accurately, as well as estimating a range of relevant parameters in order to ensure their safe and efficient use. In this framework, non-destructive inspection methods play a fundamental role in assessing the condition of lithium-ion batteries, allowing for their thorough examination without causing any damage. This aspect is particularly crucial when batteries are exploited in critical applications and when evaluating the potential second life usage of the cells. This review explores various non-destructive methods for evaluating lithium batteries, i.e., electrochemical impedance spectroscopy, infrared thermography, X-ray computed tomography and ultrasonic testing, considers and compares several aspects such as sensitivity, flexibility, accuracy, complexity, industrial applicability, and cost. Hence, this work aims at providing academic and industrial professionals with a tool for choosing the most appropriate methodology for a given application.

Funder

Next Generation EU–Italian NRRP

Publisher

MDPI AG

Subject

Automotive Engineering

Reference114 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3