3D flexible displacement sensor for highly sensitive movement measurement assisted by the terahertz imaging system

Author:

Meng Tianhua,Zhao Guozhong,Liu Hongmei,Li Wenyu,Feng Caixia,Hu Weidong

Abstract

Aiming at the difficulty of accurately calibrating the sample position in the terahertz (THz) imaging process, especially in the defect imaging detection and the precise characterization of the edge profile, a flexible and highly sensitive 3D terahertz displacement sensor with a resolution of up to 1 μm was proposed by the artificial electromagnetic metamaterials. The high resolution of the flexible sensor can be attributed to the used artificial electromagnetic metamaterials with the enhancing sensitivity of THz sensors as well as the flexible substrate with the high fitting to the target. Unlike the laser displacement sensor with a complex and large volume of the generating device, the proposed flexible sensor with a simple structural design is composed of only a fixed layer and a displacement indicating layer. The fixed layer is composed of the Mylar flexible substrate layer and the metal split resonator ring on it, and the displacement indicating layer is composed of the Mylar flexible substrate layer and the metal indicator lines on it. By using this unique double-layer structure, high-sensitivity measurement of displacement can be achieved by measuring the moving amount of the metal indicator line corresponding to the valley change in the THz transmission of the displacement sensor. The results demonstrate that the sensitivity of the displacement sensor can reach 145 GHz/μm, the quality factor Q can reach 194.67, and the quality factor figure of merit can reach 6.25 μm−1. Compared with the mature commercial displacement sensors and laser displacement sensors, the proposed sensor can have the characteristics of compact structure, simple preparation process, high-sensitivity, and flexibility, which can offer certain advantages for the realization of high-precision, miniaturization, and distributed sensing systems in the future.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3