A Review: Evolution and Diversity of Optical Fibre Plasmonic Sensors

Author:

Allsop ThomasORCID,Neal Ron

Abstract

The purpose of this review is to bring to the attention of the wider research community how two quite different optical sensory techniques were integrated resulting in a sensor device of exceptional sensitivity with wide ranging capability. Both authors have collaborated over a 20 year period, each researching initially surface plasmon resonance (SPR) and optical fibre Bragg grating devices. Our individual research, funded in part by EPSRC and industry into these two areas, converged, resulting in a device that combined the ultra-sensitive working platform of SPR behavior with that of fibre Bragg grating development, which provided a simple method for SPR excitation. During this period, they developed a new approach to the fabrication of nano-structured metal coatings for plasmonic devices and demonstrated on fibre optic platform, which has created an ultra-sensitive optical sensing platform. Both authors believe that the convergence of these two areas will create opportunities in detection and sensing yet to be realised. Furthermore, giving the reader “sign-post” research articles to help to construct models to design sensors and to understand their experimental results.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3