Seasonally and Spatially Variable Organic Matter Contributions From Watershed, Marine Macrophyte, and Pelagic Sources to the Northeast Pacific Coastal Ocean Margin

Author:

St. Pierre Kyra A.,Hunt Brian P. V.,Giesbrecht Ian J. W.,Tank Suzanne E.,Lertzman Ken P.,Del Bel Belluz Justin,Hessing-Lewis Margot L.,Olson Angeleen,Froese Tyrel

Abstract

Globally, coastal waters are considered biogeochemical hotspots because they receive, transform, and integrate materials and waters from both land and the open ocean. Extending from northern California to southeast Alaska, the Northeast Pacific Coastal Temperate Rainforest (NPCTR) region is no exception to this, and hosts a diversity of watershed types (old-growth rainforest, bog forest, glaciers), and tidal (sheltered, exposed) and pelagic marine (deep fjord, shallow estuary, well-mixed channel) environments. With large freshwater fluxes to the coastal ocean, cross-ecosystem connectivity in the NPCTR is expected to be high, but seasonally variable, with pulses in runoff from rainfall, snowmelt and glacial melt, and primary production associated with changes in ocean upwelling and incident light. However, the relative contribution of each ecosystem to surface ocean organic matter pools over time and space remains poorly constrained, despite their importance for the structure and function of coastal marine ecosystems. Here, we use a four-year dataset of particulate organic matter (POM) chemical composition (δ13C, δ15N, C:N ratio) to quantify the relative contributions of watershed materials via riverine inputs, marine phytoplankton, and macrophytes (macroalgae and seagrass) to surface waters (0-10 m) at 11 stations representing fjord, shallow non-fjord estuary, sheltered channel and well-mixed coastal environments at the heart of the NPCTR in British Columbia, Canada. Watershed, marine phytoplankton, and macrophyte contributions to surficial POM ranged between 5-78%, 22-88%, and 0.1-18%, respectively, and varied by season and station. Watershed inputs were the primary source of POM across all stations in winter and were important throughout the year within the fjord. Marine phytoplankton were the principal source of POM in spring and at all stations outside of the fjord through summer and autumn, while macrophyte contributions were greatest in summer. These results demonstrated high, but seasonally and spatially variable, connectivity between ecosystems that are often considered in isolation of one another and highlight the need to consider coastal waters as integrated land-ocean meta-ecosystems. Future work should investigate how heterogeneity in POM sources determines its fate in coastal ecosystems,and the relative importance of different basal organic matter sources for the marine food web.

Funder

Tula Foundation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3