Quantifying particulate organic matter: source composition and fluxes at the river-estuary interface

Author:

Ferchiche Florian,Liénart Camilla,Charlier Karine,Coynel Alexandra,Gorse-Labadie Laureline,Savoye Nicolas

Abstract

Particulate organic matter (POM) characteristics and variability have been widely studied along the land-ocean aquatic continuum, yet, gaps remain in quantifying its source composition, fluxes, and dynamics at the river-estuary interface. POM in rivers consists of a complex mixture of sources, derived both from locally produced (i.e. phytoplankton) and from adjacent ecosystems (e.g. terrestrial POM). Each source differ in its trophic and biogeochemical characteristics, hence impacting its integration into local food webs, its transfer to estuaries and sea, and its contribution to biogeochemical processes. In this study, we use a robust approach based on in situ POM to characterize river POM end-members, to quantify POM composition and dynamics, and to identify the related key drivers. This study was performed at the River-Estuary interface of one of the main rivers in Western Europe (the Loire River, France). For 3 years, we conducted bimonthly measurements of carbon and nitrogen isotopic (δ13C, δ15N) and elemental (C/N) ratios to quantify the contribution of two sources (phytoplankton and terrestrial POM) to the POM mixture and calculated annual fluxes of particulate organic carbon (POC) and nitrogen (PN) sources. Throughout the year, POM consisted of ~65% phytoplankton and 35% terrestrial POM. The mean annual export fluxes were 40.6 tPOC/year and 2.45 tPN/year over the studied period, with half of it originating from phytoplankton (53 and 55% for POC and PN, respectively). We observed a clear seasonal pattern in POM composition: phytoplankton predominated from March to October, in relation to high primary production, while terrestrial contributions were the highest from November to February, driven by greater autumn-winter hydrodynamics. Our study illustrate the interest of such an approach to quantify POM composition in aquatic system and estimate source fluxes, and provide fundamental results for estimating seasonal baselines in food webs, establishing biogeochemical budgets, and quantifying POM exports to estuarine and marine environments. Applying this methodology across a broad spectrum of aquatic systems should enhance our understanding of biogeochemical processes and organic matter transformation along the land-ocean continuum and illustrates the contribution of these ecosystems to global biogeochemical cycles.

Publisher

Frontiers Media SA

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3