Optimizing Microalgae Diet, Temperature, and Salinity for Dwarf Surf Clam, Mulinia lateralis, Spat Culture

Author:

Yang Zujing,Wang Hao,Li Moli,Teng Mingxuan,Wang Xuefeng,Zhao Ang,Huang Xiaoting,Hu Jingjie,Bao Zhenmin

Abstract

Dwarf surf clam, Mulinia lateralis, is widely considered as a model species for bivalves. The development of a standard culture system could greatly promote the production of high-quality individuals, yet information on the culture conditions for M. lateralis spat is still limited. This study aims to determine the suitable microalgae diet, temperature, and salinity for M. lateralis spat culture. The typically fed microalgae species, including Chlorella pyrenoidesa (Cp), Platymonas helgolandica (Ph), Dunaliella salina (Ds), Nitzschia closterium (Nc), and Chaetoceros muelleri (Cm), could be taken up by M. lateralis spat, and their filtration rates on Cp, Nc, and Cm were higher than those on Ds and Ph. For the entire spat culture, all diet trials showed similar survival percentages, while the mono-specific diet Cp exhibited the highest growth rate, suggesting that Cp was the optimal microalgae species for M. lateralis spat. Through simultaneously maximizing the growth and survival of spat, the optimal microalgae concentration and stocking density were 5 × 104 cells ml–1 and 400–600 individuals m–2 for 30–40-day-old spat as well as 1 × 105 cells ml–1 and 400–600 individuals m–2 for 40–50-day-old spat, respectively. In addition, the spat had higher growth rates and survival percentages at the temperature of 20–22°C and salinity of 22–25 ppt. The results of this study provide a basis for further culture of M. lateralis spat, and the optimized conditions will be of great significance for the construction of the standard culture system of M. lateralis.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3