Toward Understanding Mechanistic Regulation of Body Size and Growth Control in Bivalve Mollusks

Author:

Mokrani Ahmed1ORCID,Li Jian‐an1,Li Qi12ORCID,Liu Shikai12ORCID

Affiliation:

1. Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China

2. Laboratory for Marine Fisheries Science and Food Production Processes Qingdao Marine Science and Technology Center Qingdao Shandong China

Abstract

ABSTRACTBivalves possess a pair of valves connected to a stretchable ligament that facilitates the opening and closing of the shell. The growth bioprocess commences when the supplemental materials secreted from the edge are added to the early‐constructed shell. Here, we endeavor to provide a glimpse into physiological responses, mechanistic control, and omics applications toward understanding this complex trait. In the first section, we review studies that have been performed to investigate the effects of food availability, temperature, salinity, contaminants, and climate change in natural ecosystems and under experimental conditions. These conditions affect some internal promotors and alter the concentration of particular neuropeptides and neurotransmitters that induce neuroendocrinal signals crucial for regulating this peculiar process. Besides, we provide a predicted concept for organs' size control and maintaining body size homeostasis via intertwining networks, including the Hippo pathway. On the other hand, we discuss the findings of studies employing genomics, transcriptomics, proteomics, and metabolomics approaches to uncover the mechanistic modulation of growth‐related traits in different bivalve species. We recommend further research to decipher organ size control and its intricate relationship with the entire body homeostasis. Future genetic dissection studies are also recommended to identify new key genes with a major effect that profoundly influences this trait, facilitating their potential editing to develop new strains with enhanced growth rates.

Funder

Key Technology Research and Development Program of Shandong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

China Agricultural Research System

Publisher

Wiley

Reference286 articles.

1. FAO “Food and Agricultural Organization. FAO Yearbook of Fishery and Aquaculture Statistics ” 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3