Inherent Optical Properties based Vulnerability Assessment of Euphotic Zone Compression in peatland influenced Southeast Asian coastal waters

Author:

Sanwlani Nivedita,Wong Elizabeth Wing-See,Morgan Kyle,Liew Soo Chin,Martin Patrick

Abstract

Underwater light availability is a crucial aspect for the ecological functioning of shallow water bodies. Light extinction from terrestrial inputs is a growing threat to these coastal habitats. The blended quasi-analytical algorithm (QAA) was extended for the derivation of colored dissolved organic matter (CDOM) absorption coefficient along with other inherent optical properties (IOPs) from satellite observations for Southeast Asian waters. The contribution of these IOPs to diffuse attenuation of light (Kd) and penetration depth (Zd) was investigated. A vulnerability assessment was performed to identify locations potentially threatened by poor light quality in Southeast Asian waters. Advection of peatland-influenced Sumatran coastal waters rich in organic matter (ag(400nm): 1.0-2.0m-1) and sediments (bbp(400nm): 0.5-1m-1) drive the spatial heterogeneity of Sunda shelf seawater. Photic zone depth, Zd(490nm), is year-round restricted to ≤5m for critically vulnerable Sumatran coastal waters (vulnerability index, VI>0.8). This critically vulnerable state is further extended towards the southern Malacca Strait, influencing the eastern Singapore Strait from June to September. The areas harbouring marine ecosystems in the shelf waters attain a higher threshold (VI=0.6-0.8), constraining the photosynthesis to depths ≤10m. A transformation of central Malacca Strait from not vulnerable (VI<0.2) to highly vulnerable (VI=0.6-0.8) state from June to September indicates poor light conditions. Further increases in CDOM and sediment inputs into these water columns, therefore, constitute a clear risk of reducing light availability, which may have damaging effects on the functioning of coastal habitats. This study underscores the need for a complete ecological risk assessment for Southeast Asia to aid in the effective management of marine ecosystems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3