Phytoplankton Response to Different Light Colors and Fluctuation Frequencies

Author:

Neun Sebastian,Hintz Nils Hendrik,Schröder Matthias,Striebel Maren

Abstract

The natural environment of phytoplankton is variable in manifold ways. Light, as essential resource for photosynthetic phytoplankton, fluctuates in its intensity (quantity) as well as spectrum (quality) over great temporal scales in aquatic ecosystems. To elucidate the significance of temporal heterogeneity in available light spectrum for phytoplankton, we analyzed the growth of four marine North Sea species (chlorophyte Tetraselmis sp., cryptophyte Rhodomonas salina, cyanobacteria Pseudanabaena sp., raphidophyte Fibrocapsa japonica), in monoculture as well as the dynamics of these species in pairwise competition experiments under blue and green light. These species were chosen as they differ in their absorption of light, the colors were chosen to contrast the absorption by chlorophylls (blue), carotenoids (partially green) and phycobiliproteins (green). Light colors were either supplied constantly or along a gradient of fluctuation frequencies (hourly to weekly alternation) between blue and green but always with the same photon flux density. When constantly supplied (no change in color), the color of light led to significant differences in growth rates and carrying capacities of the species, with Pseudanabaena sp. being the only one profiting from green light. Under alternating light color, the maximum growth rate of R. salina was higher with faster light color fluctuations, but lower for Pseudanabaena sp. and did not show significant trends for F. japonica and Tetraselmis sp. Accordingly, competition was significantly affected by the light color treatments, under constant as well as fluctuating supply conditions. However, we did not detect considerable changes in competitive outcomes between fluctuating light colors vs. constant light color supply. As the underwater light in natural ecosystems is rather variable than constant, our results of fluctuations within the light spectrum highlight their frequency-dependent effects on growth and competition. While fluctuating light colors affect the growth and capacity of species, our tested fluctuations did not have major effects on species competition.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3