Phase variations of the summer and winter seasons in the Bohai Sea during the last four decades

Author:

Yuan Chengyi,Kuang Xiaodi,Xu Jingbo,Li Ruopeng,Wang Chen

Abstract

In most coastal oceans, the impacts of global warming on season duration and timing of seasonal transitions remain unknown. To mirror the reality of the ongoing climate change, the summer and winter seasons are redefined using the local water temperature thresholds in the Bohai Sea. Then the phase variations of these seasons are quantified using the duration and transition timing indices, including the duration (DUR), onset (ONS), and withdrawal (WIT) indices derived from the OSTIA SST dataset at a very high resolution (0.05°). During the last four decades (1982–2019), secular trends of summer indices extracted by the ensemble empirical mode decomposition (EEMD) method reveal that the summer DUR has an accumulated increase of about 17 days (4.5 days decade-1), which is primarily induced by the phase advance of the summer ONS by about 16 days (4.2 days decade-1). Spatial features of the duration and timing indices demonstrate that the lengthening of summer DUR and the phase advance of summer ONS have significantly enhanced in the shallow regions, due to the limited thermal inertia and the shorter period of the ocean’s memory. In contrast, the secular trend of winter DUR exhibits an accumulated shortening of about 18 days (4.8 days decade-1), which is induced by a moderately delayed winter ONS of 6 days (1.6 days decade-1) and a significantly advanced winter WIT of 12 days (3.2 days decade-1). The potential linkage between the phase variations in the oceanic seasonal cycle and those of the atmospheric forcing was investigated by analyzing both the interannual variability and the secular trend. Over the analysis period, the secular trend of an earlier summer ONS is related to a total reduction of cloud cover by 30% of its climatological mean and an increase of incoming solar radiation of 10 W m-2 month-1 in the late spring. Thus, our results highlight the influence of cloud cover in addition to wind speed on the temporal variations of season transition timing.

Funder

National Natural Science Foundation of China

Tianjin Science and Technology Program

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3