Fast Detection of Diarrhetic Shellfish Poisoning Toxins in Mussels Using NIR Spectroscopy and Improved Twin Support Vector Machines

Author:

Liu Yao,Qiao Fu,Xu Lele,Wang Runtao,Jiang Wei,Xu Zhen

Abstract

Diarrhetic shellfish poisoning (DSP) toxins are potent marine biotoxins. It can cause a severe gastrointestinal illness by the consumption of mussels contaminated by DSP toxins. New methods for effectively and rapidly detecting DSP toxins-contaminated mussels are required. In this study, we used near-infrared (NIR) reflection spectroscopy combined with pattern recognition methods to detect DSP toxins. In the range of 950-1700 nm, the spectral data of healthy mussels and DSP toxins-contaminated mussels were acquired. To select optimal waveband subsets, a waveband selection algorithm with a Gaussian membership function based on fuzzy rough set theory was applied. Considering that detecting DSP toxins-contaminated mussels from healthy mussels was an imbalanced classification problem, an improved approach of twin support vector machines (TWSVM) was explored, which is based on a centered kernel alignment. The influences of parameters of the waveband selection algorithm and regularization hyperparameters of the improved TWSVM (ITWSVM) on the performance of models were analyzed. Compared to conventional SVM, TWSVM, and other state-of-the-art algorithms (such as multi-layer perceptron, extreme gradient boosting and adaptive boosting), our proposed model exhibited better performance in detecting DSP toxins and was little affected by the imbalance ratio. For the proposed model, the F-measure reached 0.9886, and detection accuracy reached 98.83%. We explored the physical basis for the detection model by analyzing the relationship between the occurrence of overtone and combination bands and selected wavebands. This study supports NIR spectroscopy as an innovative, rapid, and convenient analytical method to detect DSP toxins in mussels.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3