Evaluation of the Operational CMEMS and Coastal Downstream Ocean Forecasting Services During the Storm Gloria (January 2020)

Author:

Sotillo Marcos G.,Mourre Baptiste,Mestres Marc,Lorente Pablo,Aznar Roland,García-León Manuel,Liste Maria,Santana Alex,Espino Manuel,Álvarez Enrique

Abstract

Storm Gloria was the 10th named storm in Europe for the 2019–2020 winter season, and it severely affected Spain and France. This powerful storm represents an excellent study case to analyze the capabilities of the different ocean model systems available in the Spanish Mediterranean coasts to simulate extreme events, as well as to assess their suitability to enhance preparedness in maritime disasters with high impacts on coastal areas. Five different operational ocean forecasting services able to predict the storm-induced ocean circulation are evaluated. Three of the systems are delivered by the Copernicus Marine Service (hereafter CMEMS): the CMEMS global scale solution (GLO-1/12°), the specific Mediterranean basin scale one (MED-1/24°), and the regional solution for the Atlantic façade (IBI-1/36°), which includes also part of the western Mediterranean. These CMEMS core products are complemented with two higher resolution models focused on more limited areas, which provide operational forecasts for coastal applications: the WMOP system developed at the Balearic Islands Coastal Observing and Forecasting System (SOCIB) with a horizontal resolution of roughly 2 km and the Puertos del Estado (PdE) SAMOA systems with a 350-m resolution that cover the coastal domains of the Spanish Port Authorities of Barcelona, Tarragona, Castellón and Almeria. Both the WMOP and SAMOA models are nested in CMEMS regional systems (MED and IBI, respectively) and constitute good examples of coastal-scale-oriented CMEMS downstream services. The skill of these five ocean models in reproducing the surface dynamics in the area during Gloria is evaluated using met-ocean in situ measurements from numerous buoys (moored in coastal and open waters) and coastal meteorological stations as a reference to track the effects of the storm in essential ocean variables such as surface current, water temperature, and salinity throughout January 2020. Furthermore, modeled surface dynamics are validated against hourly surface current fields from the two high-frequency radar systems available in the zone (the SOCIB HF-Radar system covering the eastern part of the Ibiza Channel and the PdE one at Tarragona, which covers the Ebro Delta, one of the coastal areas most impacted by Gloria). The results assess the performance of the dynamical downscaling at two different levels: first, within the own CMEMS service (with their regional products, as enhanced solutions with respect to the global one) and second in the coastal down-streaming service side (with very high-resolution models reaching coastal scales). This multi-model study case focused on Storm Gloria has allowed to identify some strengths and limitations of the systems currently in operations, and it can help outlining future model service upgrades aimed at better forecasting extreme coastal events.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3