Variability in the Net Ecosystem Productivity (NEP) of Seaweed Farms

Author:

Sato Yoichi,Nishihara Gregory N.,Tanaka Atsuko,Belleza Dominic F. C.,Kawate Azusa,Inoue Yukio,Hinode Kenjiro,Matsuda Yuhei,Tanimae Shinichiro,Tozaki Kandai,Terada Ryuta,Endo Hikaru

Abstract

The important role of vegetated ecosystems in the sequestration of carbon has gained strong interest across a wide variety of disciplines. With evidence growing of the potential for macroalgae ecosystems to capture carbon, there is burgeoning interest in applying newfound knowledge of carbon capture rates to better understand the potential for carbon sequestration. Seaweed farms are expected to play a significant role in carbon capture; advocates for the expansion of seaweed farms are increasing in many countries. In general, seaweed farms are expected to be highly productive, although whether they are autotrophic or heterotrophic ecosystems and hence potential exporters of carbon, is under debate. Therefore, we present our investigation of three seaweed farms, two in northern Japan and one in southern Japan. We examine the frequency of autotrophic days and compare potential rates of carbon capture of the seaweed farms with two natural macroalgae ecosystems and one degraded site. We estimated potential carbon capture rates by calculating the net ecosystem productivity from continuous recordings of dissolved oxygen concentrations under natural environmental conditions. The net ecosystem production rates for the natural ecosystems in Arikawa Bay and Omura Bay were equivalent to 0.043 and 0.054 [g C m-2 d-1] m-1, respectively. Whereas, for the degraded ecosystem in Tainoura Bay, it was -0.01 [g C m-2 d-1] m-1. We reveal that the Undaria pinnatifida farm in Matsushima Bay experience autotrophy more often than natural ecosystems, although for seaweed farms producing U. pinnatifida in Hirota Bay and Cladospihon okamuranus at Bise Point, autotrophy was less frequently observed. Nevertheless, up to 14.1 g C m-2 (0.110 g C m-2 d-1) was captured by the production of U. pinnatifida and 3.6 g C m-2 (0.034 g C m-2 d-1) was captured by C. okamuranus, and the total yield of carbon captured during 2021 production season for these farms was 43,385 kg C.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3