Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments

Author:

Berg Peter1,Huettel Markus2,Glud Ronnie N.34,Reimers Clare E.5,Attard Karl M.3

Affiliation:

1. Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22908, USA;

2. Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, USA;

3. Danish Center for Hadal Research (HADAL), Nordic Center for Earth Evolution (NordCEE), Danish Institute for Advanced Study (DIAS), and Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark;,

4. Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan

5. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA;

Abstract

Aquatic eddy covariance (AEC) is increasingly being used to study benthic oxygen (O2) flux dynamics, organic carbon cycling, and ecosystem health in marine and freshwater environments. Because it is a noninvasive technique, has a high temporal resolution (∼15 min), and integrates over a large area of the seafloor (typically 10–100 m2), it has provided new insights on the functioning of aquatic ecosystems under naturally varying in situ conditions and has given us more accurate assessments of their metabolism. In this review, we summarize biogeochemical, ecological, and biological insightsgained from AEC studies of marine ecosystems. A general finding for all substrates is that benthic O2 exchange is far more dynamic than earlier recognized, and thus accurate mean values can only be obtained from measurements that integrate over all timescales that affect the local O2 exchange. Finally, we highlight new developments of the technique, including measurements of air–water gas exchange and long-term deployments.

Publisher

Annual Reviews

Subject

Oceanography

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3