Recommendations for the design of in situ sampling strategies to reconstruct fine-scale ocean currents in the context of SWOT satellite mission

Author:

Barceló-Llull Bàrbara,Pascual Ananda

Abstract

The new Surface Water and Ocean Topography (SWOT) satellite mission aims to provide sea surface height (SSH) measurements in two dimensions along a wide-swath altimeter track with an expected effective resolution down to 15–30 km. In this context our goal is to optimize the design of in situ experiments aimed to reconstruct fine-scale ocean currents (~20 km), such as those that will be conducted to validate the first available tranche of SWOT data. A set of Observing System Simulation Experiments are developed to evaluate different sampling strategies and their impact on the reconstruction of fine-scale sea level and surface ocean velocities. The analysis focuses (i) within a swath of SWOT on the western Mediterranean Sea and (ii) within a SWOT crossover on the subpolar northwest Atlantic. From this evaluation we provide recommendations for the design of in situ experiments that share the same objective. In both regions of study distinct strategies provide reconstructions similar to the ocean truth, especially those consisting of rosette Conductivity Temperature Depth (CTD) casts down to 1000 m and separated by a range of distances between 5 and 15 km. A good compromise considering the advantages of each configuration is the reference design, consisting of CTD casts down to 1000 m and 10 km apart. Faster alternative strategies in the Mediterranean comprise: (i) CTD casts down to 500 m and separated by 10 km and (ii) an underway CTD with a horizontal spacing between profiles of 6 km and a vertical extension of 500 m. In the Atlantic, the geostrophic velocities reconstructed from strategies that only sample the upper 500 m depth have a maximum magnitude ~50% smaller than the ocean truth. A configuration not appropriate for our objective in both regions is the strategy consisting of an underway CTD sampling one profile every 2.5 km and down to 200 m. This suggests that the thermocline and halocline need to be sampled to reconstruct the geostrophic flow at the upper layer. Concerning seasonality, the reference configuration is a design that provides reconstructions similar to the ocean truth in both regions for the period evaluated in summer and also in winter in the Mediterranean.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3