Multi-platform model assessment in the Western Mediterranean Sea: impact of downscaling on the surface circulation and mesoscale activity

Author:

Aguiar EvaORCID,Mourre Baptiste,Juza Mélanie,Reyes Emma,Hernández-Lasheras Jaime,Cutolo Eugenio,Mason Evan,Tintoré Joaquín

Abstract

AbstractIn numerical ocean modeling, dynamical downscaling is the approach consisting in generating high-resolution regional simulations exploiting the information from coarser resolution models for initial and boundary conditions. Here we evaluate the impacts of downscaling the 1/16o (~ 6–7 km) CMEMS Mediterranean reanalysis model solution into a high-resolution 2-km free-run simulation over the Western Mediterranean basin, focusing on the surface circulation and mesoscale activity. Multi-platform observations from satellite-borne altimeters, high-frequency radar, fixed moorings, and gliders are used for this evaluation, providing insights into the variability from basin to coastal scales. Results show that the downscaling leads to an improvement of the time-averaged surface circulation, especially in the topographically complex area of the Balearic Sea. In particular, the path of the Balearic current is improved in the high-resolution model, also positively affecting transports through the Ibiza Channel. While the high-resolution model produces a similar number of large eddies as CMEMS Med Rea and altimetry, it generates a much larger number of small-scale eddies. Looking into the variability, in the absence of data assimilation, the high-resolution model is not able to properly reproduce the observed phases of mesoscale structures, especially in the southern part of the domain. This negatively affects the representation of the variability of the surface currents interacting with these eddies, highlighting the importance of data assimilation in the high-resolution ocean model in this region to constrain the evolution of these mesoscale structures.

Funder

“la Caixa” Foundation

Publisher

Springer Science and Business Media LLC

Subject

Oceanography

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3