Long-term response of coastal macrofauna communities to de-eutrophication and sea level rise mediated habitat changes (1980s versus 2018)

Author:

Singer Anja,Bijleveld Allert I.,Hahner Florian,Holthuijsen Sander J.,Hubert Krischan,Kerimoglu Onur,Kleine Schaars Loran ,Kröncke Ingrid,Lettmann Karsten A.,Rittweg Timo,Scheiffarth Gregor,van der Veer Henk W.,Wurpts Andreas

Abstract

Since the last decades, previous long-term Wadden Sea studies revealed significant changes in the abundance, biomass and spatial distribution of characteristic macrofauna communities in response to environmental changes and anthropogenic stressors. In this study, we performed statistical community analysis for the East-Frisian Wadden Sea (EFWS, southern North Sea) on two reference datasets across a period with severe climatic and environmental changes (1980s-2018). Therefore, historical macrofauna data from the Quantitative Sensitivity Mapping (1980s, SENSI 1) were reanalyzed and compared with data from the Synoptic Intertidal Benthic Survey (SIBES/SENSI 3) collected in 2018. Our results revealed significant quantitative and spatial changes in the characteristic macrofauna communities between the 1980s and 2018, most likely in response to de-eutrophication and sea level rise mediated habitat changes. Since the 1980s, the total number of taxa remained relatively stable (1980s: 90, 2018: 81), but the total abundance decreased by ca. -31% and the total biomass decreased by ca. -45%, particularly in the eastern regions of the study site probably due to de-eutrophication processes. Thereby, the mean abundances/m2 of ≥ -80% (1980s-2018) in the EFWS of several dominant species decreased: e.g. the gastropod Peringia ulvae, the polychaete Lanice conchilega and the bivalve Mya arenaria. In contrast, the mean abundance/m2 of one dominant species increased by ≥ +80% (1980s-2018): the invasive bivalve Ensis leei. The mean biomass [g/m2] of three dominant species decreased by ≥ -80% (1980s-2018): P. ulvae, L. conchilega and the amphipod Corophium volutator. In contrast, the mean biomass [g/m2] of one dominant species increased by ≥ +75% (1980s-2018): the polychaete Arenicola marina. In the western part of the EFWS, not only higher abundances of A. marina, but also of L. conchilega and P. ulvae were found in 2018, caused i.a. by sea level rise mediated decreasing mud contents and sand accretion on tidal flats. At the community level, the Oligochaeta/Heteromastus community increased in spatial distribution in the western EFWS in 2018 in the vicinity of increasing mussel/oyster beds.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference86 articles.

1. Praxistest monitoring küst(2008) seegraskartierung gesamtbestandserfassung der eulitoralen seegrasbestände im niedersächsischen wattenmeer und bewertung nach EG-wasserrahmenrichtlinie;Adolph;NLWKN Küstengewässer und Ästuare 2/2010.,2010

2. Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology;Albouy;Mar. Ecol. Prog. Ser.,2011

3. Intertidal mussel reefs change the composition and size distribution of diatoms in the biofilm;Andriana;Mar. Biol.,2021

4. Long-term increases in prevalence of north Sea fishes having southern biogeographic affinities;Beare;Mar. Ecol. Prog. Ser.,2004

5. Sea-Level changes in the southern north Sea region: a response to bungenstock and weert(2010);Behre;Int. J. Earth Sci.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3