Abundance, biomass and species richness of macrozoobenthos along an intertidal elevation gradient

Author:

Dewenter Jana12ORCID,Yong Joanne1ORCID,Schupp Peter J.13ORCID,Lõhmus Kertu4ORCID,Kröncke Ingrid12ORCID,Moorthi Stefanie1ORCID,Pieck Daniela1ORCID,Kuczynski Lucie1ORCID,Rohde Sven1ORCID

Affiliation:

1. Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg Oldenburg Germany

2. Department for Marine Research Senckenberg am Meer Wilhelmshaven Germany

3. Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl von Ossietzky Universität Oldenburg Oldenburg Germany

4. Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg Oldenburg Germany

Abstract

AbstractEcology aims to comprehend species distribution and its interaction with environmental factors, from global to local scales. While global environmental changes affect marine biodiversity, understanding the drivers at smaller scales remains crucial. Tidal flats can be found on most of the world's coastlines and are particularly vulnerable to anthropogenic disturbances. They are important transient ecosystems between terrestrial and marine ecosystems, and their biodiversity provides important ecosystem services. Owing to this unique, terrestrial–marine transition, strong environmental gradients of elevation, sediment composition and food availability prevail. Here, we investigated which regional and local environmental factors drive the spatio‐temporal dynamics of macrozoobenthos communities on back‐barrier tidal flats in the East Frisian Wadden Sea. On the regional level, we found that species composition changed significantly from west to east on the East Frisian islands and that total abundance and species richness decreased from west to east. On the local abiotic level, we found that macrozoobenthos biomass decreased with higher elevation towards the salt marsh and that the total abundance of organisms in the sediment significantly increased with increasing mud content, while biodiversity and biomass were not changing significantly. In contrast to expectations, increasing Chl a availability as a measure of primary productivity did not result in changes in abundance, biomass or biodiversity, but extremely high total organic carbon (TOC) content was associated with a decrease in biomass and biodiversity. In conclusion, we found regional and local relationships that are similar to those observed in previous studies on macrozoobenthos in the Wadden Sea. Macrozoobenthos biomass, abundance and biodiversity are interrelated in a complex way with the physical, abiotic and biotic processes in and above the sediment.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3