Distance-Based Sampling Methods for Assessing the Ecological Effects of Offshore Wind Farms: Synthesis and Application to Fisheries Resource Studies

Author:

Methratta Elizabeth T.

Abstract

Renewable energy, sustainable seafood, and a healthy marine ecosystem are integral elements of a sustainable blue economy. The rapid global advancement of offshore wind coupled with its potential to affect marine life compels an urgent need for robust methodologies to assess the impacts of this industry on fisheries resource species. Basic Before-After-Control-Impact (BACI) and Control-Impact (CI) designs are the most common experimental designs used to study the effects of offshore wind development on fisheries resources. These designs do not account for spatial heterogeneity which presents a challenge because empirical evidence shows that impact gradients occur at wind farms, with larger effect sizes close to turbine foundations that attenuate with increasing distance. Combining the before-after sampling design with distance-based methods could provide a powerful approach for characterizing both the spatial and temporal variance associated with wind development. Toward enhancing future monitoring designs for fisheries resource species at offshore wind farms, this paper aims to: (1) examine distance-based sampling methods that have been or could potentially be used to study impacts on fisheries resources at offshore wind farms including distance-stratified BACI, distance-stratified CI, Before-After-Gradient (BAG), and After-Gradient (AG) methods; (2) synthesize the methods and findings of studies conducted to date that have used distance-based methods to examine ecological impacts of offshore wind development for benthic macroinvertebrates, finfish, birds, and small mammals; (3) examine some of the central methodological elements and issues to consider in developing distance-based impact studies; and (4) offer recommendations for how to incorporate distance-based sampling methods into monitoring plans at offshore wind farms.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3