Generative adversarial networks with multi-scale and attention mechanisms for underwater image enhancement

Author:

Wang Ziyang,Zhao Liquan,Zhong Tie,Jia Yanfei,Cui Ying

Abstract

The images captured underwater are usually degraded due to the effects of light absorption and scattering. Degraded underwater images exhibit color distortion, low contrast, and blurred details, which in turn reduce the accuracy of marine biological monitoring and underwater object detection. To address this issue, a generative adversarial network with multi-scale and an attention mechanism is proposed to improve the quality of underwater images. To extract more effective features within the generative network, several modules are introduced: a multi-scale dilated convolution module, a novel attention module, and a residual module. These modules are utilized to design a generative network with a U-shaped structure. The multi-scale dilated convolution module is designed to extract features at multiple scales and expand the receptive field to capture more global information. The attention module directs the network’s focus towards important features, thereby reducing the interference from redundant feature information. To improve the discriminative power of the adversarial network, a multi-scale discriminator is designed. It has two output feature maps with different scales. Additionally, an improved loss function for the generative adversarial network is proposed. This improvement involves incorporating the total variation loss into the traditional loss function. The performance of different methods for enhancing underwater images is evaluated using the EUVP dataset and UIEB dataset. The experimental results demonstrate that the enhanced underwater images exhibit better quality and visual effects compared to other methods.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3