Lightweight underwater image adaptive enhancement based on zero-reference parameter estimation network

Author:

Liu Tong,Zhu Kaiyan,Wang Xinyi,Song Wenbo,Wang Han

Abstract

Underwater images suffer from severe color attenuation and contrast reduction due to the poor and complex lighting conditions in the water. Most mainstream methods employing deep learning typically require extensive underwater paired training data, resulting in complex network structures, long training time, and high computational cost. To address this issue, a novel ZeroReference Parameter Estimation Network (Zero-UAE) model is proposed in this paper for the adaptive enhancement of underwater images. Based on the principle of light attenuation curves, an underwater adaptive curve model is designed to eliminate uneven underwater illumination and color bias. A lightweight parameter estimation network is designed to estimate dynamic parameters of underwater adaptive curve models. A tailored set of non-reference loss functions are developed for underwater scenarios to fine-tune underwater images, enhancing the network’s generalization capabilities. These functions implicitly control the learning preferences of the network and effectively solve the problems of color bias and uneven illumination in underwater images without additional datasets. The proposed method examined on three widely used real-world underwater image enhancement datasets. Experimental results demonstrate that our method performs adaptive enhancement on underwater images. Meanwhile, the proposed method yields competitive performance compared with state-of-the-art other methods. Moreover, the Zero-UAE model requires only 17K parameters, minimizing the hardware requirements for underwater detection tasks. What’more, the adaptive enhancement capability of the Zero-UAE model offers a new solution for processing images under extreme underwater conditions, thus contributing to the advancement of underwater autonomous monitoring and ocean exploration technologies.

Funder

Natural Science Foundation of Liaoning Province

Foundation of Liaoning Province Education Administration

Publisher

Frontiers Media SA

Reference51 articles.

1. Underwater object classification combining SAS and transferred optical-to-SAS Imagery;Abu;Pattern Recognit.,2023

2. What is the space of attenuation coefficients in underwater computer vision;Akkaynak,2017

3. Color balance and fusion for underwater image enhancement;Ancuti;IEEE Trans. image Process.,2017

4. Enhancing underwater images and videos by fusion;Ancuti,2012

5. Using a fusion algorithm for underwater image enhancement, colour balancing, contrast optimisation, and histogram stretching;Babu;Int. J. Res. Appl. Sci. Eng. Technol.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3