Trophic ecology shapes spatial ecology of two sympatric predators, the great hammerhead shark (Sphyrna mokarran) and bull shark (Carcharhinus leucas)

Author:

Lubitz Nicolas,Abrantes Kátya,Crook Kevin,Currey-Randall Leanne M.,Chin Andrew,Sheaves Marcus,Fitzpatrick Richard,Barbosa Martins Ana,Bierwagen Stacy,Miller Ingo B.,Barnett Adam

Abstract

Information on how the trophic ecology of predators shapes their movement patterns and space-use is fundamental to understanding ecological processes across organisational levels. Despite this, studies combining spatial and trophic ecology to determine how prey preference and/or resource availability shape space use are lacking in marine predators as these can occur at low density and are often difficult to track over extended periods. Furthermore, many exhibit behavioural variability within species and among closely related, sympatric species adding further complexity. We applied a context-focused, multi-method approach to the understudied great hammerhead shark (Sphyrna mokarran) to test if movement and home ranges relate to prey preference and availability. Movement data from satellite and acoustic telemetry in Queensland, Australia, were combined with stable-isotope analysis, drone surveys, and videos of hunting behaviour. Limited dispersal, and small home ranges in S. mokarran were linked to trophic specialisation on stingray prey. Drone surveys and videos showed predation events on stingrays and demonstrated high, year-round availability of this prey in shallow, inshore habitats, which may allow the majority of S. mokarran to remain resident. This affinity for inshore habitats suggests that critical life-history requirements are performed over local or regional scales, although some larger movements were evident. These results were interpreted in comparison to the well-studied bull shark (Carcharhinus leucas), which showed reliance on pelagic food webs. Carcharhinus leucas had high individual variability in movement, with both large-scale migrations and residency. This could indicate that only some individuals are locally sustained on dynamic, pelagic food webs, while others undergo large-scale excursions over distant habitats. The specialised foraging of S. mokarran indicates they play an apex predator role in shallow, inshore habitats, potentially shaping space-use, and foraging behaviour of batoids. As inshore habitats are disproportionately affected by anthropogenic stressors, S. mokarran’s trophic specialisation and limited demographic connectivity may make the species particularly vulnerable to anthropogenic threats.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3