From little things big things grow: enhancement of an acoustic telemetry network to monitor broad-scale movements of marine species along Australia’s east coast

Author:

Barnett Adam,Jaine Fabrice R. A.,Bierwagen Stacy L.,Lubitz Nicolas,Abrantes Kátya,Heupel Michelle R.,Harcourt Rob,Huveneers Charlie,Dwyer Ross G.,Udyawer Vinay,Simpfendorfer Colin A.,Miller Ingo B.,Scott-Holland Tracey,Kilpatrick Carley S.,Williams Samuel M,Smith Daniel,Dudgeon Christine L.,Hoey Andrew S.,Fitzpatrick Richard,Osborne Felicity E.,Smoothey Amy F.,Butcher Paul A.,Sheaves Marcus,Fisher Eric E.,Svaikauskas Mark,Ellis Megan,Kanno Shiori,Cresswell Benjamin J.,Flint Nicole,Armstrong Asia O.,Townsend Kathy A.,Mitchell Jonathan D.,Campbell Matthew,Peddemors Victor M.,Gustafson Johan A.,Currey-Randall Leanne M.

Abstract

Abstract Background Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. Methods Since 2007, the Integrated Marine Observing System’s Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. Results The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore “redundancy” is a critical consideration when designing this type of array. Conclusion Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.

Funder

Parks Australia

Dalrymple Bay Coal Terminal

Winifred Violet Scott Foundation

Department of Environment and Science, Queensland

Conservation International

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3