Coastal landforms and fetch influence shoreline restoration effectiveness

Author:

Toft Jason D.,Accola Kerry L.,Des Roches Simone,Kobelt Julia N.,Faulkner Hannah S.,Morgan Jason R.,Perla Bianca S.,Metler Maria,Dethier Megan N.

Abstract

Coastal shorelines are a key interface between terrestrial and aquatic ecosystems and are vital for human livelihood. As a result, shorelines have experienced substantial human modifications worldwide. Shoreline “hardening” – the construction of armor including seawalls, bulkheads, or rip-rap – is a common modification that has substantial negative ecological effects. Currently, restoration involving the removal of armor and replacement with “living” shorelines is becoming an established practice. Still, the ecological response to armor removal is oftentimes unpredictable and site-specific. We hypothesized that the confluence of larger-scale geophysical features might strongly influence ecological restoration outcomes at particular locations. To measure the effectiveness of armor removal in the context of broad-scale geophysical features across the Salish Sea, WA, USA, we studied 26 paired restored and natural reference beaches of the same shoretype (feeder bluff, accretion shoreform, or pocket beach), as well as corresponding fetch, sub-basin, and percent of shoreline sediment drift cell armored. Sites were restored for an average of six years. We gauged restoration effectiveness based on levels of five ecological response variables: beach wrack (percent, depth), logs (count, width), sediments (percent sand), vegetation (percent overhanging, count of fallen trees), and insects (density, taxa richness). We found that armor removal often restored these variables to natural levels, but that restoration response was dependent on geophysical features such as shoretype and fetch. Natural beaches did have higher measurements of overhanging vegetation, fallen trees, and insect taxa richness, as these features likely take time to mature at restored beaches. Feeder bluffs had a higher proportion of surface sand and number of fallen trees than other shoretypes, coinciding with the erosion of bluff material, whereas natural pocket beaches within bordering rocky headlands had higher insect densities. Sites with a large fetch had higher input of deposited wrack and logs, whereas sites with a small fetch had higher input from localized terrestrial sources – fallen trees and eroding sand. By incorporating the effectiveness of restoration with landscape features such as shoretype and fetch, we can more effectively plan for future restoration actions and better predict their outcomes.

Funder

U.S. Environmental Protection Agency

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3