Different Responses of Chlorophyll a to the Passage of the Tropical Storm Wipha (2019) in the Coastal Waters of the Northern Beibu Gulf

Author:

Chen Ying,Ren Chaoxing,Feng Yuting,Shi Haiyi,Pan Gang,Cooper Mick,Zhao Hui

Abstract

Tropical storms (TS) are important drivers of short-term changes and affects the coastal and marine environment. Based on in situ observational data from four locations in the coastal area of the northern Beibu Gulf and satellite data, we analyzed the changes in temperature, salinity, and turbidity during the transit of TS “Wipha” in 2019 and assessed the environmental factors controlling chlorophyll a concenteation (Chl-a) increases in the coastal area. Our results showed that in the coastal area, the growth of phytoplankton after the TS was mainly controlled by the nutrient and light availability. The increased input of freshwater by TS, including direct inputs from rainfall and increased river discharge, reduced the salinity. The decrease in salinity may indicate an increased input of nutrient-rich freshwater at all four stations (nutrients input: S1>S2>S3>S4). Nutrient concentration at S1, S2, and S3 implied by salinity was high, but that at S4 was limited. The shorter recovery time of turbidity after TS indicated the faster improvement of light conditions in this area [recovery time: S4 (2 days)< S1 (3 days)< S3 (5 days)< S2 (10 days)]. The high turbidity associated with poor light penetration was an important factor limiting phytoplankton growth at station 2, with a slow recovery of the turbidity to pre-TS levels. The rapid recovery of the turbidity to the pre-TS levels at S1, S3, and S4 suggested good light conditions soon after the TS, and probably led to a significant increase in Chl-a after the TS ([Chl-a]: S1>S3>S4). The less of an increase of Chl-a at S4 was not only related to nutrient restriction but also related to weak mixing of the water column, while the least significant decrease in the SST at S4 implied that the enhancing mixing after TS was limited.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3