Response of Shallow-Water Temperature and Significant Wave Height to Sequential Tropical Cyclones in the Northeast Beibu Gulf

Author:

Chen Xiaotong12,Xie Lingling123ORCID,Li Mingming123ORCID,Xu Ying3ORCID,Wang Yulin12

Affiliation:

1. Laboratory of Coastal Ocean Variability and Disaster Prediction, College of Oceanography and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

2. Guangdong University Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Ocean, Zhanjiang 524088, China

3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Zhanjiang 524088, China

Abstract

Using shallow-water buoy observations, reanalysis data, and numerical models, this study analyzes the variations in sea temperature and significant wave height (SWH) caused by two sequential tropical cyclones (TCs) ‘Lionrock’ and ‘Kompasu’ in October 2021 in the northeast Beibu Gulf, South China Sea. The results show that the sea surface temperature (SST) cooling of the nearshore waters was larger than the offshore water in the basin of the gulf, with the cooling amplitude and rate decreasing and the cooling time lagging behind wind increasing from coast to offshore. The near-surface temperature at the buoy station had a maximum decrease of 2.8 °C after ‘Lionrock’, and the decrease increased slightly to 3 °C after the stronger wind of ‘Kompasu’. The total decrease of 4.6 °C indicates that the sequential TCs had a superimposed effect on the cooling of the Beibu Gulf. The heat budget analysis revealed that the sea surface heat loss and the Ekman pumping rate in the nearshore waters during ‘Kompasu’ (−535 W/m2 and 5.8 × 10−4 m/s, respectively) were significantly higher than that (−418 W/m2 and 4 × 10−4 m/s) during ‘Lionrock’. On the other hand, the SST cooling (−1.2 °C) during the second TC is smaller than (−1.6 °C) the first weaker TC in the gulf basin, probably due to the deepening of the mixed layer. During the observation period, the waves in the Beibu Gulf were predominantly wind-driven. The maximum SWHs reached 1.58 m and 2.3 m at the bouy station near shore during the two TCs, and the SWH variation was highly correlated to the wind variation with a correlation of 0.95. The SWH increases from the nearshore to offshore waters during the TCs. The SAWN and ARCIRC coupled model results suggest that wave variations in the Beibu Gulf are primarily influenced by water depth, bottom friction, and whitecapping. Two days after the TCs, sea surface cooling and high waves appeared again due to a cold air event.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3