Skill assessment of seasonal forecasts of ocean variables

Author:

Balmaseda Magdalena Alonso,McAdam Ronan,Masina Simona,Mayer Michael,Senan Retish,de Bosisséson Eric,Gualdi Silvio

Abstract

There is growing demand for seasonal forecast products for marine applications. The availability of consistent and sufficiently long observational records of ocean variables permits the assessment of the spatial distribution of the skill of ocean variables from seasonal forecasts. Here we use state-of-the-art temporal records of sea surface temperature (SST), sea surface height (SSH) and upper 300m ocean heat content (OHC) to quantify the distribution of skill, up to 2 seasons ahead, of two operational seasonal forecasting systems contributing to the seasonal multi-model of the Copernicus Climate Change Services (C3S). This study presents the spatial distribution of the skill of the seasonal forecast ensemble mean in terms of anomaly correlation and root mean square error and compares it to the persistence and climatological benchmarks. The comparative assessment of the skill among variables sheds light on sources/limits of predictability at seasonal time scales, as well as the nature of model errors. Beyond these standard verification metrics, we also evaluate the ability of the models to represent the observed long-term trends. Results show that long-term trends contribute to the skill of seasonal forecasts. Although the forecasts capture the long-term trends in general, some regional aspects remain challenging. Part of these errors can be attributed to specific aspects of the ocean initialization, but others, such as the overestimation of the warming in the Eastern Pacific are also influenced by model error. Skill gains can be obtained by improving the trend representation in future forecasting systems. In the meantime, a forecast calibration procedure that corrects the linear trends can produce substantial skill gains. The results show that calibrated seasonal forecasts beat both the climatological and persistence benchmark almost at every location for all initial dates and lead times. Results demonstrate the value of the seasonal forecasts for marine applications and highlight the importance of representing the decadal variability and trends in ocean heat content and sea level.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3